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Chapter 4

TCP Performanceover SatelliteLinks

TheTCP/IPprotocolsuitehasbecomethelinguafracaof datacommunications,andthe
TCPprotocolis usedfor mostcommunicationsthatrequireguaranteed,end-to-endreliability. Un-
fortunately, theperformanceof TCPis oftendegradedwhentheend-to-endpathincludesasatellite
link. In thischapter, we focuson theproblemof improving TCPperformanceover satellitelinks.

In recentyears,thesubjectof TCPover satellitelinks, andmoregenerallyover wireless
links, hasbeena fruitful researcharea.Nevertheless,theperformanceof modernTCPimplemen-
tationsover satellitelinks is still disappointing.In theInternet,satellitelinks areoftenusedin the
configurationdepictedin Figure4.1. In thisconfiguration,thesatelliteprovidesaccessto thewired
Internet.Furthermore,thecostof satellitetransponderaccessgenerallydictatesusingthesatellite
link in anasymmetricbandwidthconfiguration(with morebandwidthallocatedin thedirectionto
theclients),or evenin ahybridunidirectional(broadcast)configurationwith atelephonereturnpath
[100]. Thiskindof configurationhasnotbeentreatedthoroughlyin theliterature,andin considering
theconfigurationshown in Figure4.1,wewereled to considerthefollowing researchproblems:

1. SatelliteTCPconnectionsfor which a portionof theconnectiontraversesthewired Internet
aresubjectto severethroughputdegradationif thepacketsflow throughaqueuethatis being
congestedby connectionswith ashortround-triptime(RTT). CanthisbiasagainstlongRTT
connectionsbe overcomeby simplechangesto the congestionavoidancealgorithmin end
hosts?

2. In thecurrentInternet,thereexistsa wide varietyof TCPimplementationswith variousop-
tionsthat interactin differentways.What is thebestcombinationof (standard)TCPoptions
andimplementationguidelinesfor useoversatellitechannels?

3. How muchperformanceadvantagecanbegainedby “splitting” a TCPconnectionat a gate-
waylocatedatthesatelliteterminalequipmentconnectedto thewiredInternet,therebyshield-
ing thesatellitesubnetwork from therestof theInternet?

4. In thecaseof split connections,how muchfurther improvementcouldbegainedby usinga
transportprotocolspecificallyoptimizedfor thesatelliteenvironment?

In this chapter, we focuson thefirst threequestionsraisedabove, anddeferthefourth to
Chapter5. Thefirst two questionsmainly relateto improving variousaspectsof TCP’s intertwined
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Figure4.1: Exampleof abroadbandsatellitenetwork in whichasatellite-basedhostcommunicates
with aserver in theInternet.

congestion control andloss recovery mechanisms.To addressthefirst question,we investigatethe
potentialimprovementof changingtheend-to-endbehavior of thecongestionavoidancealgorithm.
Next, we investigatethe file transferbehavior of different variantsof TCP SACK andpresenta
standards-conformantalgorithmthatachieveshighperformancein a satelliteenvironment.Finally,
we addressthethird questionby investigatingthepotentialbenefitof splitting theend-to-endcon-
nectionat agateway.

4.1 TCP Fairnessin a HeterogeneousEnvir onment

4.1.1 Intr oduction

Thefairnessproblemin TCPis rootedin its congestionavoidancemechanism,whichwe
describedabove in 2.1.1. The congestionavoidancephaseis sometimesreferredto as“additive
increaseandmultiplicative decrease,” because,in theabsenceof congestion,segmentsareaddedto
thewindow over time,while in thepresenceof congestion,thewindow is halved(or multipliedby
onehalf).

The“additive increaseandmultiplicative decrease”algorithmin TCPparallelsa similar
algorithm in the DECnetprotocol [66]. Chiu and Jain showed that this algorithm leadsto fair
allocationsof network bandwidtheven thoughit operatesin a distributedmanner[28]. However,
theiranalysispresumesthatall connectionsin thenetwork sharethesameadditive increaserateand
multiplicative decreasefactor. In TCP, the multiplicative decreasefactor(1/2) is the samefor all
connections,but thepolicy of anadditive increaseof onesegmentper roundtrip time (RTT) does
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Figure4.2: A demonstrationof theunfairnessof thecurrentTCPcongestionavoidancealgorithm.
Theconnections,from top to bottom,have RTTsof 10,100,200,300,and600msrespectively.

not provide a uniform increasein theratesof TCPconnectionswith differentRTTs1. In particular,
connectionswith long RTTs opentheir window more slowly than thosewith short RTTs. And
if a mixture of suchshortandlong RTT connectionssharea bottlenecklink, severeunfairnessis
inevitable as the shortRTT connectionsgrab the availablebandwidthwell beforethe long RTT
connectionshave achance[54].

Figure4.2 illustratesanexampleof this problemby showing simulationresultsfor a 60
secondtraceof TCPconnectionsover the illustratedtopology. In Figure4.2, theevolution of the
sequencenumberis plottedfor 5 connections(from top to bottom,with RTTsof 10,100,200,300,
and600ms,respectively) sharingthesamebottlenecklink. Thesequencenumberin thissimulation
is onapersegmentbasis,andtheplotswrapafterevery90segments.ThelongRTT connectionsdo
not obtainanallocationcloseto their fair shareof thebottlenecklink, andtheir overall throughput
performancesuffersdrastically.

To combatthebandwidthinequitiesthatresultfrom heterogeneousRTTs,Floyd proposed
amodificationto TCP’swindow adjustmentalgorithmthatcounteractstheRTT bias.In thissection,
we elaborateFloyd’s “Constant-Rate”algorithm[39] with a thoroughinvestigationof the perfor-
manceachievableby bothuniversallyandselectively (i.e., incrementally)deploying a TCPwith a
modifiedwindow increasepolicy in thecongestionavoidancephaseof theconnection.

Floyd [39] developedafairly generalcharacterizationof window increasealgorithmsthat
facilitatesthediscussionof fairness.AlthoughTCPmaintainsits sendwindow in unitsof bytes,we
find it moreconvenienthereinto discussit in unitsof segments.A key assumptionis thatanumber
of segmentsapproximatelyequalto thesendwindow sizeis sentevery RTT; this is generallytrue
for long RTT connections.Let � betheincrease(in segments)in thesizeof thesendwindow for a�

In thefollowing,wedistinguishbetweentheoverallcongestionavoidance� �	��

��������� andthe� 
����������
� implemented
in thisalgorithmsuchasthemultiplicativedecreasefactorof 1/2andtheadditive increaseof onesegmentperRTT.
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Figure4.3: Simulatedsequencenumberevolution for connectionswith differentRTTs underboth
theconstantrateandincrease-by-onepolicies.

connectionin oneroundtrip time � �!� . Thereforethewindow growsata rateof ��"�� �!� segments
per secondwhenadditive increaseis in effect. In conventionalTCP, �$#&% . Floyd refersto the
standardTCPpolicy asan“increaseby 1” policy.

If onewere to scalethe window growth rate ��"�� �!� by � �'� , the effect would be to
build the window at a constantrateof � segmentsper second,independentof the RTT. However,
the window growth ratedoesnot equalthe growth rate in datatransmission.As [41] pointsout,
it resultsin a “linear-in-RTT” biasin the sendingrate. Becauseeachconnectioncansenda full
window’s worthof segmentseachRTT, shorterRTT connectionsachieve greaterthroughputover a
commontime interval. To fully remove thebias,we mustchangetheadditive increaseto �)(*� �!�
segmentspersecond;i.e., a factorof � �!� + fasterthantheoriginal algorithm. Floyd definessuch
anincreaseasa Constant-Rate (CR) increase policy, sinceit canroughlybeinterpretedascausing
therateof segmenttransmissionto increaseataconstantrate.

Figure4.3 demonstratesthe behavior of two of thesepoliciesfor two connectionswith
differentroundtrip times.Thefigureplotstheequation

,.-0/21 354547698;: #
<>=�? 3@4A45BCD
EGF 6 �IHKJMLONQPR�IS :�T

for thedifferentRTTsandpolicies�IS . Thisequationdescribesthenumberof segmentssent(
,.-U/21 3@454*698;:

)
assumingawindow of segmentsis senteachRTT andtherearenolosses,where� F is equalto 1 (the
standardpolicy), and �WV implementstheconstantratepolicy (andhenceis adifferentvaluefor each
RTT). While only a roughapproximation,thegraphconfirmstheshapeof the increaseratecurve
for eachpolicy.
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4.1.2 Methodology

We usedthe UCB/LBNL Network Simulator“ JYX ” 2 to evaluateTCP performance.In
addition to using the standardJYX modules,we portedthe HTTP traffic generatormodulefrom
BruceMah’s INSANE simulator3, which gave us theability to adda mix of realisticbackground
traffic to oursimulations.

Our studyfocusedon large file transferperformance.While shortHTTP transfersand
Telnetconnectionsover longRTT pathsarealsosubjectto performancedegradationduringperiods
of congestion,this degradationis duemoreto the fundamentallatency of long RTT connections
than to problemswith congestionavoidance. Additionally, HTTP protocol implementationsare
migratingtowards“persistent-HTTP”andlongerdurationTCPconnections.Wealsodidnotassume
theimplementationof fair schedulingandTCP-friendlybuffer managementthatcanisolateflowsor
classesof flows from oneanother(e.g.,asdiscussedin [131]), or pricingstructuresthatmight give
network providersincentivesto protectthethroughputof payingcustomers.In short,we assumed
an environmentsimilar to the presentday Internet,with the additionof RandomEarly Detection
(RED)queues[44], andthelatestin standardizedTCPimprovements(Selective Acknowledgments
(SACK) [83] andlargewindow enhancements[67]).

PerformanceMetrics

A numberof metricsfor quantifyingfairnesshavebeenproposedbut nosinglemetrichas
commonacceptance[39]. In this paper, we considera “f air shareper link” metric; i.e., if thereareJ flowsthroughabottlenecklink, eachflow hastheright to %Z"WJ th of thecapacityof thatbottleneck
link. Jain’s metricof fairness[28] is applicablein this context. For J flows,with flow [ receiving a
fraction \�S onagivenlink, thefairnessof theallocationis definedas:

]_^ [U`aJYbZX�X c 6UdfeS E V \�S : +Jg( 6 d eS E V \ +S :ih
This metric rangescontinuouslyin valuefrom %Z"WJ to 1, with 1 correspondingto equalallocation
for all users.Utilization is anotherimportantmetric,sincehigh fairnessis of little useif the link
capacityis grosslyunderutilized.Utilization is definedhereinasthenumberof original bits (i.e.,
notcountingretransmissions)successfullytransferredovera link duringsometimeinterval divided
by theproductof link rateandthattime interval; this is oftencalled“goodput.”

j 8 [0k9[0l ^m8 [0n�Joc 6 X�bqpmr$b�J 8 X ^ �sP@b�L : ( 6 X�bqpmr$b�J 8 XZ[0lmb :6 k9[UJYP ` ^m8 b : ( 8 [Ur$b h
Topologies

We exploreda numberof testconfigurationsthatallowedusto isolateselectedbehavior
of both the standardand our proposedwindow adjustmentpolicies. We selectedthe topologies
illustratedin Figure4.4;similar testconfigurationshave previouslybeenusedby theresearchcom-
munity to study the effectsof congestion.The first testconfiguration(Topology1) wasusedtot

http://www-mash.cs.berkeley.edu/ns/u
http://http.cs.berkeley.edu/v bmah/Software/HttpModel/
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Figure4.4: Threesimulationtopologies.

studytheeffectsof two long durationconnections,onewith a shortRTT (10 ms) andonewith a
long RTT (100-600ms),sharinga singlebottlenecklink. Thesecondtestconfiguration(Topology
2) wasusedto examinethe effectsof many competingconnectionsover a singlebottlenecklink.
The six connectionshave RTTs of 10, 20, 100, 200, 300, and 600 ms. The third configuration
(Topology3) wasusedto examinethe effectsof long RTT connectionsthat mustalsotraversea
numberof network hopspopulatedby shortRTT connections.This topologyis very similar to the
onepreviously usedby Floyd to studytheCR algorithm[39]; thenumberof congestedgateways
couldvarybetween1 and10(thefigureillustrates5 congestedgateways).

Configuration Details

We studiedthe performanceof two differentTCP variantsdescribedabove in Section
2.1.1:TCPNewReno,andTCPSACK. Wenotethatotherresearchershavedetectedproblemswith
usingTCP Reno(a versionof TCP that doesnot performadequatelywhenmultiple dropsoccur
in a window of data)in combinationwith congestionavoidancemechanismsthat try to addmore
thanonesegmentper RTT [17]; therefore,we avoidedsuchimplementations.We alsoexamined
two differentqueueingschemes:traditional“first-in, first-out” (FIFO)queueing,andRandomEarly
Detection(RED) with packet discard.4 In our simulations,datapacket sizeswerefixed at 1000
bytes,andthebottlenecklink speedwas1.5Mb/s. We examineda rangeof queuesizesfrom 4 to
50 packets,but in the datathat follows, we concentrateon a RED queuesizeof 50 packetswith
a “minimum threshold”of 20 packetsanda “maximum threshold”of 40 packets; all otherRED
parameterswere set to the JYX defaults. 20 packets in this caseis approximately100 ms at our
outputline rate.w

RED queuesoperateby computinganexponentiallyweightedmoving averageof thequeuesize.Whentheaverage
queuesize is below someminimum threshold,the queuedoesnot drop any packets. When the averagequeuesize
is betweenthe minimum andmaximumthreshold,the queueprobabilisticallydropsincomingpacketsaccordingto an
algorithm describedin [44]. When the averagequeuesize exceedsthe maximumthreshold,the queuedropsevery
incomingpacket. Theinstantaneousqueuedepthcanexceedthemaximumthresholdif theaveragequeuedepthis below
themaximumthreshold.
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Figure4.5: BenchmarkperformanceresultsusingTopology2: Utilization vs. queuesize.

Data Analysisand Presentation

TCP throughputin an environmentcontainingrandomtraffic canbe quite variable,be-
causesmallchangesin initial conditionscancausewidevariationsin resultingbehavior. Therefore,
wecomputedtheutilizationandfairnessof aparticularconfigurationasfollows. Wefirst ranenough
independentsimulationssuchthat the samplestandarddeviation of eachconnection’s throughput
waswithin 5% of its samplemean(this generallyrequiredaroundfifty runs). We thenusedthese
samplemeansto computethefairnessandutilizationof a giventopology. In theremainderof Sec-
tion 4.1, if theexperimentaldatadoesnot explicitly list errorbars,thereadermayassumethat the
samplestandarddeviation is within 5% of the valuelisted. In the following subsections,we first
provide somebenchmarkdata,followed by an analysisof the Constant-Ratepolicy, followed by
experimentsaimedatselectively increasingtheaggressivenessof a long-delayTCPconnection.

4.1.3 Benchmark Results

Tocalibrateoursimulationstudies,weestablishedasetof benchmarkperformanceresults
for eachof our test topologies. Thoughusedprincipally to gaugethe efficacy of our proposed
policies, the benchmarkdataitself revealssomeinterestingeffects. In this section,we examine
benchmarkperformancedatafrom Topology2 in Figure4.4.

Figures4.5 and4.6 plot theutilization andfairnessof thestandardTCPwindow adjust-
mentpolicy for Topology2. The error barson thesefiguresrepresent99% confidenceintervals,
andarevery small. We show resultsfrom the combinationof two TCP variants,NewRenoand
SACK, with two queueingdisciplines,FIFO andRED. In this representative dataset(andin our
otherbenchmarkdata),thefollowing trendsareevident:x The utilization of the bottlenecklink improves with increasedqueuesize, because,under

congestion,large queueskeepthe link busy asthey drain out while TCP sourcesbackoff
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Figure4.6: BenchmarkperformanceresultsusingTopology2: Fairnessvs. queuesize.

theirsendingwindow. Additionally, largerqueuesabsorbburstsof packetsandpreventcoarse
timeouts,whichcauselong idle periods.x Network fairnessis poor in almostall cases,except when queuesizesare very large. In
general,the two shortdelayconnectionsobtainedroughly 50% of the bandwidth,and the
backgroundWWW traffic consumed20% of the bandwidth.The remaining30% wassplit
unequallyamongthe 4 long RTT connections,with the longestconnectionreceiving only
about24 to 64 kb/s (2 to 4%) for TCP NewRenowith FIFO queueing.While even larger
queuesizesmayhelpfurther, they wouldalsointroducemoresignificantdelayvariability.x In general,when queuesizesare reasonablylarge and when all TCPsuseSACK instead
of NewReno,the network fairnessis marginally better. This is most likely dueto SACK’s
superiorityin recoveringfrom multiple dropsin a singlewindow. Sincemultiple congestive
lossesin asinglewindow aremorelikely to occurin aconnectionwith a longRTT, theuseof
SACK helpssuchconnections.However, theuseof SACK by all TCPconnectionsdoesnot,
by itself, remove thebiasagainstlongRTT connections.

In general,RED queuesperformmuchbetterin termsof utilization andfairnessthando
FIFO queues.However, we found that the useof RED andSACK alone,without modifications
to TCP sendingbehavior, still leaves much room for improvementin fair bandwidthallocation.
RED queuesequalizethe bandwidthof flows with similar RTTs, but do not do so for flows with
heterogeneousRTTs,aspointedout in [44]. In theremainderof thissection,wefocusonenhancing
theperformanceof TCPimplementationsthatuseSACK andnetworksusingREDqueues.

4.1.4 Performanceof the Constant-RatePolicy

In this section,wedescribethecasein whicheachforegroundandbackgroundTCPcon-
nectionusesaConstant-Rate(CR)policy. In TCPimplementations,anadditive increaseto theTCP
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variable XZJML ��HKJML (sendcongestionwindow) of approximatelyonesegmentper RTT, assuming
an acknowledgment(ACK) is received for eachsegment,is effectedby executingthe following
pseudocodeuponreceiptof anew ACK:

snd_cwnd = snd_cwnd + 1/snd_cwnd.

In this manner, theTCPconnectiongraduallyaddsto its congestionwindow at therateof approxi-
matelyonesegmentperRTT; thisapproachto building thecongestionwindow reducestransmission
burstiness[66]. To implementaCRpolicy, wecanmodify thewindow increasealgorithmtoaccount
for theRTT bias:

snd_cwnd = snd_cwnd + (c*rtt*rtt)/snd_cwnd,

where� is theconstantthatcontrolstherate.Thispolicy causesanadditive increasein thethrough-
put ratethatis thesamefor all connections.After initial experiments,we observedthatthesecond
termof theabove equationcould leadto very burstysendpatterns,which led to increasedlosses.
For example,if the RTT is large andthe valueof XZJML �IH'JML is small, eachACK cantrigger the
transmissionof several segments.To avoid this behavior, we boundedthe increaseperACK by 1
segment;i.e.:

snd_cwnd = snd_cwnd +
min((c*rtt*rtt)/snd_cwnd, 1 segment).

With this constrainton thesender’s behavior, theTCPconnectionis never moreburstythana TCP
connectionin slow start.Anotherapproach,with whichwedid notexperiment,wouldbeto smooth
thesendingof severalsegmentsacrossa longertimeperiod.

Onequestionpreviously raisedby Floyd is how to pick thepropervaluefor theconstant� . Oneway to think of the valueof � for CR connectionsis how the aggressivenessof the CR
connectionwould compareto thatof a standardTCPconnectionwith a certainRTT. For example,
if �y#z%s{|{ , thevalueof theRTT thatmakesthenumeratorequalto 1 in our pseudocodeabove is
100ms. Therefore,anenvironmentin which �}#~%s{|{ would have connectionsthatwereaboutas
aggressive asnormalTCPconnectionswith 100msRTTs. Wechoseto experimentwith a rangeof
values,between�'#f� (asaggressive asstandard500msconnections)and �!#�%��a{|{ (25ms).

In additionto varyingtheconstant� , weexperimentedwith severalothervariationsin an
effort to identify which typesof environmentsweresuitablefor theCRpolicy:x TCPNewRenovs. TCPSACK,x REDvs. FIFOgateways,x bottleneckqueuelengths(or REDmaximumqueuethresholds)from 4 to 50packets,andx TCPRTT timergranularityof 500ms(standardin many TCPimplementations)vs. 10ms.

As mentionedabove,Topology3 conformscloselyto onewith whichFloyd experimented
[39], andwe wereable,whenusinga similar valuefor theCR constant( ��#�� ), to confirmtheir
resultsthatCR cansubstantiallyimprove the fairnessof connectionstraversingmultiple gateways
whenall connectionsusea CR policy. However, we alsoobserved thefollowing generaltrendsin
ourdata:
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Figure4.7: Utilization vs. window constantof TCPSACK with fine-grainedRTT estimatesover
topologieswith bottleneckREDqueues.

x DeepRED queuesappearto bea prerequisitefor goodperformanceof theCR policy. Per-
formancewhenFIFO queuesor shortqueueswereusedwasvery inconsistent,in thesense
that therewasoftenno valueof � thatsimultaneouslyyieldedhigh fairnessandhigh utiliza-
tion. Moreover, we could not determinestrongcorrelationsbetweenthe valueof � andthe
fairnessandutilization metricswe wereusing; i.e., theperformancewashighly sensitive to
theparticularsimulationtopology.x TCPSACK andfine-grainedRTT timerswerethenext mostimportantindicatorsof goodCR
performance.Theuseof SACK helpsTCPrecover from lossesmorequickly, which leadsto
improvedandmoreconsistentperformance.Also, many existingTCPimplementationsusea
coarseestimateof theRTT, which impairstheability of our modifiedcongestionavoidance
algorithmto determinethetrueRTT of theconnection.

Figures4.7 and 4.8 plot the utilization and fairnessperformanceof TCP SACK over
bottleneckREDqueueswhenall connections,includingbackgroundHTTPtraffic, usethesameCR
policy, constant� , andRTT timergranularityof 10ms.Topology1 correspondsto thecasein which
thelongRTT connectionhasaroundtrip propagationdelayof 600ms,while Topology3 in thiscase
correspondsto thetopologywith 5 congestedgateways(thetraceis taken from thefirst congested
gateway). For comparison,we alsoplot ashorizontallines the utilization and fairnessachieved
whenall TCP connectionsusethe standardalgorithm(i.e., benchmarks).The dataindicatesthat
the fairnesscanbe substantiallyimproved if all connectionsadoptthe CR policy. However, the
utilization sufferedfor small � whentherewereonly two foregroundconnectionsin the topology
(Topologies1 and3). Whenstatisticalmultiplexing wasin full effect (Topology2), both fairness
andutilization werenearoptimal for smallvaluesof � . Additionally, in Topology3, althoughthe
fairnessimprovedsubstantially, equalallocationswerenot obtainedby theCR policy becausethe
longRTT connectionis alsotraversingmultiplecongestedgateways.
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Figure4.8: Fairnessvs. window constantof TCP SACK with fine-grainedRTT estimatesover
topologieswith bottleneckREDqueues.

In theseexperiments,as � becamelarger, connectionsbecamemoreaggressive, to the
point that the boundin our policy of adding1 segmentper ACK was in effect nearlyall of the
time. Consequently, sincetheCR policy wasno longerbeingapplied,the unfairnessreappeared.
In general,we observed that thefairnesspropertieswerebestwhenthevalueof � wasbelow 100.
However, if too few connectionsareusingthe link, suchas in Topologies1 and3, sucha small
valueof � canleadto lower utilization. Becauseit is difficult in practicefor a given connection
to determinethe numberandtype of connectionsagainstwhich it is competing,we concludethe
following negativeresult:agoodchoiceof theconstant� cannotbedeterminedwith highconfidence
onanoperationalbasis.

Not only doesthe CR policy appeardifficult to managein a distributed network, we
alsofound it susceptibleto the presenceof TCPconnectionsoperatingunderthe standardpolicy.
For example,Figure4.9 illustratesthe fairnessperformancewhena singleadditionalconnection
using the standardwindow increasepolicy was introducedinto eachof the topologies(andalso
includedin the fairnesscomputation).Althoughthis additionalconnectionslightly improved link
utilization,muchof thefairnessimprovementdueto CR waslost whenthis competingconnection
wasintroduced,asit notonly usedadisproportionateshareof thebandwidthitself but alsoactedas
a “trailblazer,” improving theperformanceof shortRTT connectionsthatwereusingtheCRpolicy
by a disproportionateamount. We alsoobserved similar performancedegradationif no extra file
transferswereintroduced,but insteadtheHTTPbackgroundtraffic (20%of thebottlenecklink rate,
on average)usedthe standardpolicy. Similar effects (passive connectionscompetingwith more
aggressive connectionsusing the standardcongestionavoidancealgorithm) are also responsible
for the poor performanceof TCP “Vegas” in a long RTT environmentcharacterizedby a mix of
heterogeneousTCPimplementations[147].
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Figure4.9: Thesensitivity of theproperselectionof theconstant� whentheeffectsof a standard
TCPconnectionareaddedto theperformanceshown in Figure4.8.

4.1.5 Selectively Modifying the Additi ve IncreasePolicy

Wenext investigatedwhetherthethroughputof anindividual longRTT connectioncould
beimprovedby modifying theadditive increasepolicy of only thelong RTT connection.We were
interestedin two questions:x Cananindividualconnectionimproveits own throughputby becomingmoreaggressive
duringadditive increase?x If so,how doestheindividual connection’s moreaggressive behavior affect theperfor-
manceof other(unmodified)connectionsusingthesamepath?

To studythefirst question,weexperimentedwith an“increase-by-� ” (IBK) policy rather
thanthestandard“increase-by-one,” againlimitedbyamaximumincreaseof onesegmentperACK.
In otherwords,weusedthefollowing pseudocodein our implementation:

snd_cwnd = snd_cwnd +
min((K/snd_cwnd),1 segment).

For example,by setting ��#�� , we built thewindow by roughly2 segmentsperRTT.5 Again, the
increaseis boundedby 1 segmentperACK, but this is thegeneraltrend.

Figure4.10 illustratesfairnessresults,calculatedover the entiresimulatednetwork, for
thecasein whichonly oneconnectionin thesimulatedtopologyusedtheIBK policy. In particular,
weenabledtheIBK policy onthelongestRTT connectionsin eachof thethreetopologies,andthen
repeatedtheexperimentby enablingtheIBK policy on only the300msconnectionin Topology2.
In the graph,the valueof ��#�% (left-mostdatapoints)correspondsto the normal(benchmark)
case.WeobservedthatthelongRTT connectionwasableto steadilyimprove its performanceover
thatof thebenchmarkcaseby increasing� acrosstherangeof valuesweconsidered.This resulted�

If delayedacknowledgmentsare beingused,this is akin to correctingthe window growth penaltythat is due to
delayedacknowledgments.
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Figure4.10:Improvementin fairnessvs. window constantdueto theIBK policy.

in improvedfairnessin all topologiesfor smallvaluesof ����% . For largervalues,eventhoughthe
throughputof the long RTT connectioncontinuedto improve, fairnessactuallydecreasedin some
topologiesasthemoreaggressive connectionbeganto take morebandwidththanits fair share.

In Figure4.10we plottedtheperformanceof TCPSACK over RED queues,andfound
thattherewasnolimit to theimprovementthatamoreaggressive connectioncouldobtainfor itself.
Werepeatedtheexperimentfor TCPNewRenooverFIFOqueues,andfoundthatconnectionscould
increasetheir own performance,independentof the topology, by usinga valueof � of up to 4 or
so.However, for highervaluesof � , performancedegraded,becausethesendingbehavior became
tooburstyfor theFIFOqueuesto successfullyabsorb.

Becausetheperformanceimprovementsresultfrom increasingTCP’saggressiveness,we
shouldbeconcernedthatthiscanhaveanegativeimpactonotherpeerconnections.Remarkably, we
foundthat,in everycaseweexamined,theaveragefairnessindex always improved,andtheaverage
utilization held relatively constant,whenthe moreaggressive connectionuseda modestvalueof� (lessthan8 or so). This improvementoccurredregardlessof whetherTCPSACK or NewReno
wasused,or whetherFIFO or RED queueswerepresent.In fact, themajority of theredistributed
bandwidthcamefrom connectionsthatwerealreadyusingmorethantheir fair share.Theeffecton
otherconnectionswassimilar to what they would have experiencedhadthe long RTT connection
actuallybeenaconnectionwith asomewhatshorterRTT.

For example,Table4.1 providesanexampleof themagnitudeof theperformancegains
achievable. For thevalue ��#�� , we tabulatetheutilization, fairness,andthroughputof the four
longestRTT connectionsin Topology2. In thefirst columnareresultsfrom wheneachconnection
usedthestandardpolicy, thesecondcolumnshows theresultsfrom whenonly the300msconnec-
tion usedan IBK policy, andthe third columnis from whenonly the 600 ms connectionusedan
IBK policy. This tableillustratesthat themoreaggressive connectionsdid not seriouslyharmthe
throughputof the peerconnections.The throughputgains(highlightedin bold font) aresubstan-
tial; in many cases,throughputincreases(andhencereductionsin user-perceivedlatency) exceeded
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benchmark 300ms 600ms

Utilization 0.99 0.99 0.99

Fairness 0.807 0.861 0.873

Thr oughput (kb/s)

600ms 68.1(0.9) 59.6(0.6) 138.7(2.0)

300ms 116.2(1.1) 240.8(2.8) 109.1(1.1)

200ms 156.6(1.7) 139.8(1.5) 151.6(1.1)

100ms 217.1(2.1) 188.1(1.9) 207.0(1.8)

Table4.1: Effect of theIBK policy on throughput(Topology2, � = 4). 99%confidenceintervals
areshown in parentheses.

100%whenREDqueueswereused,and50%whenFIFOqueuesweretraversed.
Wenext investigatedwhethertheperformancegainsweresustainablewhenmultiplecon-

nectionsbecomemore aggressive by examining this casewith Topology 2. We found that the
aggressive connectionswereableto simultaneouslyimprove theirown performance,althoughtheir
relative performancegainswerenotwhatthey wouldhave achievedhadthey beentheonly aggres-
siveconnection.Of course,if everyconnectionadoptedanIBK policy, thefairnesssituationwould
bebackto thestandardcase,sotheremustbesomeRTT thresholdbeyondwhich connectionscan
becomemoreaggressive if sucha policy is to work in practice.Finally, we experimentedwith the
casein which congestionwas inducedin both directionsof datatransfer. This hadthe effect of
disruptingtheACK streamto someextent,but did notsignificantlyaffectourmainresults.

4.1.6 Implementation Issues

We have alreadydiscussedsomeminor implementationchangesto the codesegment
which builds the congestionwindow. Throughoutthe discussion,we implicitly assumedthat the
TCP connectionhadan accurateestimateof its RTT. In practice,this is not the case. TCP does
maintaina smoothedroundtrip time ( XZ` 8�8 ), but becauseof thetimer granularityof 500msin TCP,
this value is not very accurate.It is, however, rathereasyto improve the RTT accuracy through
useof the TCPtimestampsoption [67]. A sendingTCP implementationcanput a moreaccurate
timestampin theTCPtimestampfield,whichis merelyreflectedby thereceiver;suchatechniqueis
suggestedfor TCPVegas[16]. However, it is importantnot to basetheretransmissiontimer value
on this accuratetimestamp,becauseTCPfastretransmitandfastrecovery rely on the X�` 8�8 variable
beingsomewhat larger thanthe actualRTT. We experimentedin JYX with runningthe TCP timer
granularityat 1msinsteadof 500 ms, andfound that the moreaccurateXZ` 8�8 valuecausedcoarse
timeoutsto triggerbeforefastrecovery couldbeaccomplished.

Onepracticalissueis that modificationsto the sendingalgorithmof an implementation
have little useif the implementationis a client of a large datatransferratherthan the sourceof
thedata.However, it is possibleto indirectly modify thesender’s behavior by actionstakenat the
receiver. For example,by sendingmoreACKs backto thesender, thereceiver can“speedup” the
sender;e.g., if onewereto receive a segmentof 1000bytes,sendingACKs 1:250,251:500,etc.
wouldquadruplethewindow build rate.Wedid notexperimentwith this technique,andnotethatit
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is of limited utility whenthereversechannelis constrainedandcannothandletheadditionalACK
traffic.

Anotheralternative to increasingtheaggressivenessof a singleconnectionis to run mul-
tiple connectionsin parallel,coordinatedby theapplicationor sometypeof sessionmanager. This
technique,sometimescalled“striping”, hasbeenin usefor sometime by satelliteoperatorsand
WWW browsersoftware. Oneadvantageof this approachis that it overcomessmallofferedwin-
dows by the receiver. This technique,however, canimpact the network morethanour approach
sincemultiple slow startsarelaunchedinto the network simultaneously. Recentresultsin which
congestionwindow stateis sharedacrossthemultipleconnectionscanpotentiallycombattheprob-
lem [11]. In general,theuseof stripingwithout theconstraintsoutlinedin [11] arenot favorably
viewedby theresearchcommunity.

4.1.7 Summary

In this section,we have presentedthe resultsof our investigationof simplechangesto
TCP’s congestionavoidancealgorithm in an effort to improve its fairnessproperties. While we
foundthat theConstant-Rate(CR) policy couldimprove fairnessdramatically, we facedtwo prac-
tical difficultiesthatwould likely preventuniversaldeploymentof this schemein its currentform:
i) the properselectionof a constantis dependentuponthe network topologyand the numberof
peerconnectionsandis thereforedifficult to determinein a distributedmanner, andii) thefairness
benefitsof theCR policy canbeconfoundedby competingconnectionsusingstandardcongestion
avoidance,therebymakingit disadvantageousto deploy CR in anexisting heterogeneousenviron-
ment.However, whenweinsteadmadeonly certainlongRTT connectionsslightly moreaggressive,
wewerealwaysableto improvenetwork fairnesswhile keepingbottlenecklink utilizationrelatively
constantby usinganincrease-by-� (IBK) policy. Interestingly, theeffectsonotherunmodifiedcon-
nectionsthatweresharingthebottlenecklink weresimilarto whatthey wouldhaveexperiencedhad
themodifiedconnectionactuallybeenaconnectionwith a shorterRTT.

Our resultsindicatethat it may be beneficialfor long RTT connections(runningTCP
SACK) to becomeslightly moreaggressive duringtheadditive increasephaseof congestionavoid-
ance.While our datasetis not comprehensive enoughto allow us to advocatea particularpolicy
at this time, the IBK policy for small valuesof � (suchas2 or 4) maysignificantlyimprove the
throughputwhile notsignificantlyimpactingotherflows. Suchapolicy couldbeinvokedin practice
whentheTCPimplementationdetectsthattheconnectionhasanRTT aboveacertainthreshold(for
example,connectionstraversinga GEO satellitelink have a much larger RTT– at least500 ms–
thanterrestrialconnections).A TCPreceiver couldeven inducethesenderinto an IBK policy by
acknowledgingdatain smallerchunks.Determiningappropriatevaluesfor � asa functionof RTT,
aswell asdeterminingtheaccuracy andresolutionrequiredof TCP’s RTT estimates,couldbethe
focusof futurework.

4.2 End-to-End TCP Performanceover SatelliteLinks

4.2.1 Intr oduction

In this section,we quantify just how well state-of-the-artTCPimplementationsperform
in a satelliteenvironmentcomposedof oneor moresatellitesin geostationaryorbit (GEO)or low-
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Figure4.11:Configurationfor network experiments.

earth-orbit(LEO), particularlywhenthe satelliteconnectionforms only a part of the end-to-end
connection,asshown in Figure4.1. We focusedon two typesof workloadfoundmostcommonly
in theInternet:largefile transfers,andshortWebconnections.

Our assumptionsaboutfuturesatellitenetwork characteristicsareshapedby projections
of futurecommercialsystems(e.g.,Teledesic[130], Spaceway[38]) thatwill offer Internetconnec-
tionsatup to broadband(tensof Mb/s)dataratesvia networksof LEO or GEOsatellites(or hybrid
constellations).Usersmaycontactotherhostsin eitherthesatellitenetwork or thewide-areaInter-
net.Wediscussedsomeof ourassumptionsaboutthetransmissionandcongestioncharacteristicsof
theend-to-endpathusingsuchsatellitesystemsin Section2.1.2.In short,weassumefuturesatellite
networkscharacterizedby low BERs,potentiallyhigh degreesof bandwidthandpathasymmetry,
high propagationdelays(especiallyfor GEO basedlinks), and low internalnetwork congestion.
Theseassumptionswereusedto drive our protocoldesignandperformanceanalysesdescribedin
therestof thischapter.

4.2.2 Methodology

This experimentalmethodologypertainsto theremainderof this chapterandalsoto the
resultspresentedin Chapter5.

Experimental Setup

Our experimentswereconductedusinghosts,runningBSD/OS3.0 UNIX, connectedto
Ethernetsin a local-areasubnetat Berkeley. TheTCPimplementationson thesemachinesarede-
rivedfrom4.4BSD-Lite(alsoknown asNet/3[144]), with modificationsto supportourexperiments.
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Figure4.12:Configurationfor simulationexperiments.

We configuredthereceiversto offer the largestwindow possible(240KB) to thesenders.For the
experiments,traffic sourceswereconnectedto a 100Mb/s Ethernet,andtraffic sinkswereon a 10
Mb/s Ethernetseparatedby a 10Mb/stransitEthernetsegment. Figure4.11illustratestheexperi-
mentaltopology. To generatetraffic, we useda combinationof thesock program[127] for bulk
file transfersandaHTTPtraffic generatorfor testingof “4K slow start”andT/TCP. Thistraffic gen-
eratorgeneratedsmall file transfersaccordingto empiricaldistributionsdrawn from BruceMah’s
HTTPtraces[79]. We implementedSTPin theBSD/OSUNIX kernel.

For investigatingsatellitetransportprotocolperformance,it is usuallysufficient to ex-
perimentwith delayanderror simulatorsratherthanwith detailedemulatorsof the transmission
channel.To emulatesatellitelinks, we usedmodifieddevice driversthatdelayedsendinga packet
ontotheEthernetfor adeterministicamountof time. Thesedriverscanalsoconstrainthemaximum
rateat which a hostcansenddata.We modeledGEOsatellitelinks by a constraintof 1.3Mb/s of
TCP/IPbandwidth(i.e., approximatelyT1 rateat thephysicallayer),on a 600msRTT link. LEO
satellitesweremodeledby aconstraintof 1.3Mb/swith afixedRTT in therangeof 40-400ms[49].
Our links hadno bit errorsor variationin propagationdelay, which,while not representative of all
satellitelinks, exemplifiesthecommoncase.

In additionto controlledexperimentsperformedin our local environment,we alsode-
scribeexperimentsin Chapter5 involving two commercialnetworks in our wirelessnetworking
testbed. We useda network basedon a direct broadcastsatellite(the HughesDirecPCsystem,
which coversthecontintenalUS),anda packet radionetwork (theMetricomRicochetsystem,de-
ployed in the SanFranciscoBay area). For DirecPCexperiments,we sentdatafrom a computer
locatedat theDirecPCuplink centerat Germantown, MD over thesatellitelink to a multi-homed
hostononeof oursubnets.Weusedthewide-areaInternetto returnacknowledgmentsto thetraffic
source.To emulatea normaluserexperiencewith theDirecPCsystem,we constrainedthe return
link to bebandwidthlimited to 50 Kb/s to simulatea modemconnection.Althoughnot a satellite
network, theRicochetnetwork offersa challengingenvironmentfor transportconnections,includ-
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Figure4.13:Throughputperformanceof TCPSACK NewReno,TCPSACK Reno,TCPNewReno,
andTCPRenooveranexperimentalpathwith aTCP/IPbandwidthof 1.3Mb/sandnotransmission
errors. Datapointsrepresentthesamplemeansfrom 20 independenttransfersof 10 MB each.In
thisandsubsequentfiguresrepresentinga largenumberof experimentalresults,errorbarsrepresent
95%confidenceintervals.

ing asymmetryandlarge latencies;we usedthis network only for testingof the STPprotocolas
describedin Chapter5. In theseexperiments,a wired hostat Berkeley communicatedwith a host
on theRicochetnetwork usingthepacket radionetwork in bothdirections.

Simulation Configuration

We usedns, describedabove in Section3.2, to testsimulatedtopologiesthat matched
our experimentalsetup.We alignedtheTCPmodulesto matchour implementations,andwrotea
STPsimulationmoduleto closelyemulatethe implementationusedin the experiments.We also
useda backgroundHTTP traffic generator, similar to that usedin theexperiments,to lightly load
thenetwork topologyandto breakup any TCPphaseeffects[43]. Our simulationtopology, which
conformedcloselyto theexperimentalsetup,is shown in Figure4.12.

4.2.3 Performancefor Lar geFile Transfers

TCP is the dominantprotocol for file transfers(FTP) in the wide-areaInternet. In this
section,we describesimulationsandexperimentsusedfor characterizingfile transferperformance
over satellitelinks.

To maintainhigh throughputfor largefile transfers,theTCPcongestionwindow mustbe
large.This impliesthatthecongestionavoidanceandlossrecovery mechanismsarevery important
in determiningperformance.In this sectionwe examinetheperformanceof four variantsof TCP
lossrecovery andcongestioncontrol,whichwefirst introducedin Section2.1.1:
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x TCP Reno The unmodifiedTCP implementationin our BSD/OS3.0 operatingsystemis
commonlyknown asTCPReno. Many modernTCP implementationsarelargely basedon
this versionof TCP. Of the satellite-friendlyTCPextensionsdescribedabove, BSD/OS3.0
supportswindow scaleandpathMTU discovery.x TCP NewRenoTCP“NewReno” is a collectionof bug fixesandrefinementsfor how TCP
Renohandlesthe fastrecovery phaseof congestionavoidance.Our TCP NewRenoimple-
mentationis similarto TCPRenoexceptthatit avoidsfalsefastretransmissions[60], multiple
window reductionsin onewindow of data[36], andconstrainsthe burstinessof the sender
upon leaving fast recovery [36]. Specifically, it implementsthe “Less Careful,Slow-but-
Steady”variantof NewRenodescribedin [42].x TCP SACK-Reno Renocongestionavoidancealgorithmsmaybecombinedwith theSACK
optionfor lossrecovery to form TCP“SACK-Reno.”x TCP SACK-NewRenoLikewise, this correspondsto TCPNewRenocongestionavoidance
with theSACK optionfor lossrecovery.

It is importantto emphasizethatall of theabove implementationswouldberegardedasconformant
to theTCPstandards;in practice,many morevariantsof TCPexist.

For ourfile transferexperiments,werepeatedlytransferred10MB filesacrossourtestbed
while varyingthelatency of theemulatedsatellitechannel.Thefile transferslastedat least60 sec-
onds,allowing thelow throughputof theinitial slow startphaseto beamortizedacrossthelifetime
of theconnection.In thesimulations,weaddedanumberbackgroundHTTPtraffic generatorsto the
topologysoasto introducelow levelsof crosstraffic (approximately10%of theforwardthroughput
of thechannel).Thesetraffic generatorsdid not by themselvescongesttheforwardpath;theTCP
losseswereperiodicallyself-inducedby thegreedynatureof thecongestionavoidancemechanism
of thepersistentfile transfers.In theexperiments,which wereconductedon operationalnetworks
duringearlymorningperiodsof light network activity, the low amountsof live traffic on the net-
worksandthevariableprocessingdelaysof thehostssufficedto addvariability to theexperiments.

Behavior of Several TCP Variants

Weplot theresultsof theseexperimentsin Figure4.13.In all of ourfigures,throughputis
definedas“application-level” throughput.For valuesof RTT lessthan100ms,theperformanceis
relatively high for all four variants.However, for GEOdelays(600ms)andfor LEO delaysgreater
than100ms,thedifferencein performancefor differentTCPimplementationsis quiteevident. By
analyzingpacket tracesin both thesimulationsandtheexperiments,we determinedthat themain
distinctionbetweenthe implementationswasin their behavior immediatelyuponleaving theslow
startphaseof congestionavoidance.It is critical thatTCPtransitionfrom slow startto congestion
avoidancein a smoothmanner, with a congestionwindow closeto thebandwidth-delayproductof
thepath.Wefoundtheperformanceof SACK-NewRenocongestionavoidanceto bethebest;in this
case,whena slow startovershootoccurs,theprotocolcutsits window in half onceandsmoothly
movesto congestionavoidanceafter recoveringall losses.Thereis little penaltyfor usinga high-
bandwidth,high-latency GEOsatellitelink in this case.WhenSACK wasusedwithout NewReno
enhancements(SACK-Reno),we observed that the slow start termination,which is characterized
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Figure4.14: Typical performance,usinga standardBSD TCP (Reno)implementation,of a large
file transferover aGEOsatellitechannel.

by several burstsof packet losses,resultedin the implementationcutting its congestionwindow
in half several times, ratherthan just once. As a result, TCP was forced to rebuild its window
linearly from a very low value.Theperformanceof NewRenowithoutSACK wassimilarbut for a
differentreason.In this case,theslow startovershootresultedin similar burstypatternsof losses,
but sinceNewReno,unlikeSACK, canonly recoveronelossperRTT, it spentalargeportionof time
recovering from theslow startlosses.Finally, TCPRenorarelyavoideda retransmissiontimeout
and multiple reductionsin its window after the first slow start, resultingagainin slow window
growth.

A closerlook at thebehavior of thesedifferentTCPvariantsis informative. Figure4.14
illustratesa “time-sequence”plot of an individual connection–the initial 60 secondsof a large
file transferusinganunmodifiedBSD/OSUNIX TCPimplementation(TCPRenowithout SACK)
over the topologyillustratedin Figure4.11. Two plotsareoverlaid–theevolution of thesender’s
sequencenumber, and the evolution of the acknowledgmentsreceived (the traceof the sender’s
sequencenumbergenerallylies to the left of the acknowledgmenttraceandis marked by larger
points). The connectioninitially startsin slow-start, and althoughthe connectiontakes several
secondsto makenoticeableprogress,within thefirst 10secondstheconnectionhasalreadyovershot
by a wide margin the capacityof a router along the path, resultingin many packet drops(not
necessarilycontiguousin thesequencespace).The implementationperformsfastretransmission,
but sincemany packet losseshave occurred,the implementationinvariably is forced to recover
with a coarsetimeoutbecauseit doesnot interpretthe arrival of a partial acknowledgment(that
is, an acknowledgmentthat doesnot cover all of the datathat wasoutstandingat the time of the
retransmission)asa sign that the next unacknowledgedpacket is missing. The timeoutcuts the
window to onesegmentandtheslow startthresholdin half; normallythiswouldallow thesenderto
rapidlyrampupafterthetimeoutto half of its previouswindow (thatcausedcongestion).However,
becausethereceiver’s buffer hasmany out-of-orderpackets(andholesto fill), asthepost-timeout
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Figure4.15:CorrectNewRenobehavior, usingamodifiedBSDTCPimplementation,of a largefile
transferover aGEOsatellitechannel.

TCPsenderstartsto sendmoredata,it canreceiveanumberof duplicateacknowledgmentsthatpush
it in andout of fast retransmissionagain(thesearesometimescalled“f alsefastretransmissions”
[60]), eachtime cuttingthewindow andslow startthresholdin half. Theresultis, by thetime that
thesenderhasrecoveredfrom all of theoriginal losses,it hasa very low congestionwindow and
slow startthresholdvalue,andis forcedto build its window linearlyfrom averylow value,resulting
in poorthroughput.

TCP NewRenowasdevisedto correctthis oversightin the TCP Renoimplementation;
it definesa “recovery phase”that endswhen all of the packets that were outstandingwhen the
first losswasdetectedareacknowledged. Figure4.15 illustratesthe typical performanceof this
algorithm. No timeoutsoccurduring the recovery andthe window is not reducedmultiple times
for the sameburst loss. However, sincethe recovery takes one round trip time for eachgap in
the sequencespaceto be recovered,the result is a TCP connectionthat takesover half a minute
to recover from a singleburst of losses.For this reason,aspointedout by Floyd [42], it may be
beneficialto preventthisbehavior from occurringby forcingTCPto takea timeoutif it requirestoo
many roundtripsto recover. Second,in ourexperimentswith thisalgorithmasspecifiedby [60] and
[36], wenoticedundesirablebehavior thatoccurredat theendof therecovery phase.Thisbehavior
(immediatereentryinto a burst losssituation)canbeseenin Figure4.16,andit is dueto a burstof
packetsthatcanoccurat theendof recovery. This burstoccursif, duringwindow inflation of the
recoveryphase,thetransmissionof new segmentswasconstrainedby thereceiver’sofferedwindow
(becausethe“window inflation” stepof TCPRenocanresultin very largeartificial windows being
generated).As aresult,whentheholeis pluggedin thereassemblybuffer andtheTCPsenderresets
its congestionwindow uponreceiptof theacknowledgment,it is eligible to immediatelysendmany
segments. The solutionto this problem,asshown in Figure4.15, is to constrainthe congestion
window at theendof recovery to beno largerthantheamountof outstandingdataat thattime(plus
onesegment,to allow anew transmission).Thisproposalwasfirst describedin [76].
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Figure4.16: IncorrectNewRenobehavior, usinga modifiedBSD TCPimplementation,of a large
file transferover a GEOsatellitechannel.This behavior is dueto a burstof packetstransmittedat
theendof recovery.

The bestbehavior is obtainedby combiningboth the SACK andNewRenoalgorithms,
asillustratedby Figure4.17. In this case,TCP recoversvery rapidly from bursty lossesbecause
theextra informationpresentin theSACK optiongivestheTCPsendera morecompletepictureof
whatis missing.Figure4.18illustratesthis recovery in moredetail;theburstof lossesis recovered
in lessthantwo seconds(that it requiresmorethana roundtrip delay is dueto queueingdelays
thathave built up), anda largewindow is preserved for thesubsequentconnectionto usein linear
growth phase.

Finally, we illustratein Figure4.19theclosecorrespondencebetweensimulationandex-
perimentalresultsfor file transfers.In theremainderof thissection,wepresentonly ourexperimen-
tal resultssinceoursimulationresultsweregenerallyin closeagreement.TheTCPimplementations
of thens simulatorarevery realistic,to thepoint thatbugsfoundin commonimplementationscan
alsobeenabledin oursimulations.

Effect of a CompetingConnection

The above experimentsareappropriateto modelconnectionsentirely within a satellite
subnetwork, but do not accuratelyportrayconditionsfoundwhenusingthesatellitenetwork to ac-
cesssiteson thewired Internet,wherecompetitionfor bandwidthfrom many differentconnections
(with shorterroundtrip delays)canleadto network congestionandunfairnessin bandwidthallo-
cation. For our next experiments,we addeda single, large-window persistentconnectionfrom a
backgroundsourceto abackgroundsink in thesamedirectionastheforegroundfile transfer. In our
topology, thiscausedthefirst routerin thenetwork to occasionallybecomecongested.Notethatthis
backgroundconnectiondoesnot traverseany portionof our emulatedsatellitesubnet.Theresults
in thiscasearestrikingly different.It only takesonelow delay(in thiscase,20msRTT) connection
to drasticallyreducetheachievablethroughputfor SACK-NewReno,asshown in Figure4.20.This
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Figure 4.17: Correct SACK behavior, using a modified BSD TCP implementation(including
NewRenolossrecovery),of a largefile transferoveraGEOsatellitechannel.

is theTCPfairnessproblemidentifiedearlierin this chapter. TCP’s fairnesspropertiescanbe the
first-orderdeterminantof how well a large-window satelliteTCP connectioncando in the wide-
areaInternet.Eventhoughthesatelliteconnectionwassuccessfulin avoidingtimeoutsin almostall
of the transfers,thewindow reductionsdueto recurringfastretransmitssubstantiallyreducedthe
throughput.Thethroughputis alsomuchmorevariableundertheseconditions,asrepresentedby
theerrorbars.Themainproblemis thattheconnectionwith thelongRTT is toosluggishto rebuild
its window andpushdatathroughthecongestedqueuebeforeit takesanotherloss.

In summary, we observed thatTCPSACK with NewRenocongestionavoidanceis able
to sustainthroughputsatcloseto thebottlenecklink rateevenfor GEO-likedelays.This is because
TCP is ableto amortizethe low throughtputof the initial window build acrossa longerperiodof
highthroughput.However, ourdataillustratesthattheuseof SACK aloneis notsufficient to enable
high performance.Specifically, NewRenohelpsto avoid coarsetimeoutsandmultiple window re-
ductions,while SACK acceleratesthelossrecovery phase.Specificdetailsof ourSACK-NewReno
implementationcanbefoundin AppendixA. Finally, theresultwewould like to emphasize,which
agreeswith ouranalysisin Section4.1,is thatit only takesverymoderatelevelsof congestionin the
wide-areaInternetto drasticallyimpair theperformanceof evenwell-configuredTCPconnections.

4.2.4 Performancefor WebTransfers

Besidesfile transfers,mostof therestof theTCPtraffic in theInternetis drivenby Web
transfers.Suchconnectionsarevery differentfrom file transfers.Typically, anWebclient issuesa
small requestto a server for anHTML (HyperText MarkupLanguage)page.Theserver sendsthe
initial pageto theclient on this first connection.Thereafter, theclient launchesa numberof TCP
connectionsto fetchimagesthatfill out therequestedpageor to obtaindifferentpages.Eachitem
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Figure4.18:Closeupof rapidSACK recovery of multiple losses.

on thepagerequiresa separateconnection.6 Many commonWebbrowsersallow a userto operate
multiple(typically, four) TCPconnectionsin parallelto fetchdifferentimageobjects.Basically, the
datatransfermodelis “client request,server response.”

Using standardTCP, any connectionrequiresa minimum of two RTTs until the client
receivestherequesteddata(thefirst RTT establishestheconnection,andthesecondoneis for data
transfer). As the RTT increases,the RTT canbecomethe dominantportion of the overall user-
perceived latency, particularlysinceaverageWebserver responsetimesaremuchsmallerthanone
second[51]. Two mechanismsdescribedin Section3 attemptto alleviate the latency effectsof
TCP for shortconnections.The first, T/TCP, doesaway with the initial handshake (RTT) of the
connection.Thesecond,4KSS,allows theTCPserver to sendup to 4380bytesin theinitial burst
of data.If thesizeof thetransferis nomorethan4380bytes,thetransfercancompletein oneRTT.
By usingsomesimpleanalysis,we canquantify thebeneficialeffectsthat theseTCPmechanisms
have on theuser-perceived latency.

Figure4.21,adaptedfrom a similarfigurein [57], illustratesthelatency in ahypothetical
threesegmentreplyusingstandardTCP. Wemake thefollowing assumptions:x We do not modelserver responsetimesor segmenttransmissiontimes. We assumeanenvi-

ronmentin whichtheRTT is thedominantlatency in thetransfer.7 Server responsetimesand
segmenttransmissiondelaysarea constantoffsetto thelatencieswe calculate;i.e., thesame
offsetmustbeaddednomatterwhatversionof TCPweareconsidering.x Weassumenopacket lossesandafixedRTT. Therefore,theselatenciesarethebestcase.x Wedonotmodelsomeof thebugsthathaveappearedin earlyHTTPimplementationsandthat�

Wewill discussshortlyamodificationto thisapproach,known asPersistent-HTTP(P-HTTP),whichreusesthesame
TCPconnectionfor multiple items.�

This is notalwaystruein practice.Evenfor fastlinks, server responsescantakeseveralseconds,but onaverage,the
server responsetime is muchlessthanasecond[51].
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Figure 4.19: Agreementbetweensimulationand experimentalresultsfor TCP SACK and TCP
NewReno.

arediscussedin [57], undertheassumptionthat they will graduallydisappear. For example,
onequiteprevalentbug allows the connectionto startwith an initial congestionwindow of
two segments[128].

With theseassumptionsin mind,considerFigure4.21,in whichdashedlinesdenotecontrolpackets
andsolid lines indicatedatapackets. Thefirst RTT is consumedby a SYN exchange,afterwhich
theclient issuesanHTTP GET request.Uponreceiving andrespondingto this request,theserver
at this point hasa congestionwindow of onesegment. Assumingthat the TCP implementation
implementsdelayedacknowledgments(delayedACKs)of upto 200ms[127], theclientonaverage
will acknowledgethis dataafter 100 ms. Upon receiving the acknowledgment,the congestion
window grows to 2, andtheserver sendsthesecondandthird segments,followedby a FIN, which
closesits half of theconnection.Theclientmustcloseits own half of theconnection,but wedonot
modelthis delaysinceit doesnot contribute to user-perceived latency. Therefore,thetotal amount
of TCP-relatedlatency is 3 RTTs+ 100msin thiscase.UsingeitherT/TCPor 4KSSwould reduce
thelatency to 2 RTTs,andusingbothmechanismswould reduceit to asingleRTT.

We usedHTTP tracesto computeprobability massfunctions(pmfs) for the numberof
bytestransferredperHTTPconnection.WethencomputedtheaverageTCPlatency for all of these
file sizes,basedon a simpleanalysisof how the congestionwindow builds over time. Because
sometransferswerevery long,we eliminatedthoseover 100segments(only 2-4%of thedataset,
in general).For thesecases,it is morerealisticto considerthemaslargefile transfers.Ourtracedata
wasgatheredfrom two differentuserpopulations.Thefirst, collectedby Mah in 1995[79], comes
from a well connectedBerkeley subnet.Thesecondset,collectedby Gribblein 1997[51], comes
from Berkeley residentialusageover dial-upmodems.By usingthis tracedatawith our model,we
estimatedtheminimum,median,andmeanlatency effectsof TCPon user-perceived latency. For
GEOnetworks,wemodeledtheRTT asa fixed600ms,andfor LEO networkswe assumeda RTT
of 80 ms. To verify theanalyticalresults,we alsoperformedmeasurementsusingsimilar pmfsto
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Figure4.20: Theeffect of a singlecompetingshort-delayconnectionon thesatelliteconnection’s
throughput.The competingconnectionwasa persistentfile transferusingTCP SACK NewReno
with anominal20msRTT betweenabackgroundsourceandsink in theexperimentaltopology.

driveaTCPtraffic generatorin ourexperimentaltopology, andwerecordedthelatency experienced
alongwith thefile sizefor eachfile transfer. For theexperiments,wedid notcull thelargetransfers
from our tracedata.Theexperimentalsetupcapturedtheeffectsof not only thepropagationdelay
but alsotheprocessingdelaysin realendsystems.

In Table4.2,wepresenttheresultsfrom ananalysisof thedatasetprovidedby Mah[79].
Thefirst threecolumnsof datalist theminimum,median,andmeanTCPtransfertimesrequired,
accordingto the analysisof the tracefile andassuminga maximumsegmentsizeof 1500bytes.
Thesevalueswerecalculatedby first determiningthe TCP relatedlatency for a connectionof a
givensize,andthenby weightingtheselatenciesaccordingto thepmfsderivedfrom thetracedata.
The fourth columnlists experimentalresultscorrespondingto this dataset. Thesevaluesarethe
mean(and95%confidenceinterval) of 1000independenttransfers,in which thesizeof thetransfer
wasgeneratedrandomlyaccordingto thepmfs drawn from the tracedata. The last four columns
aresimilar to thefirst four, exceptfor theuseof a maximumsegmentsizeof 500bytes.This data
indicatesthattheuseof eitherT/TCPor TCPwith 4KSSimprovesmeanlatency by asmallamount,
but thecombinationof bothoptionsyieldsanimprovementby a factorof two to three.Therelative
improvementis similarwhetherGEOor LEO networksareassumed(becausetheanalysisis based
on RTT). Becausethe meanlatenciesusing the assumedLEO network arealreadyrathersmall,
the improvementsdueto TCPoptimizationsarelesslikely to beperceived by users.Thedataset
providedby Gribble[51] containedslightly largertransfers,onaverage,but thesametrendsin TCP
latency werepresent.

Finally, the most recentversionof the HTTP specification(version1.1 [37]) recom-
mendsthat servers and clientsadoptthe persistentconnectionand pipelining techniquesknown
as“persistent-HTTP”(P-HTTP)[102]. RatherthanusingseparateTCPconnectionsfor eachimage
on a page,P-HTTPallows for a singleTCPconnectionbetweenclient andserver to bereusedfor
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multiple objects. The shift to P-HTTPoffers a tradeoff in performancefor satelliteconnections.
On the onehand,P-HTTPis potentiallymuchmorebit-efficient thanHTTP with standardTCP,
becauseconnectionsarenotsetupandtorndown asfrequently(theconnectionestablishmentcosts
areidenticalto thoseof T/TCP[57]). However, in termsof latency, theuseof T/TCPandmultiple,
concurrentconnectionsmayyield fasterWebpageloadsundersomescenarios.Thecapabilityof
many Webbrowsersto supportmultiple, concurrentconnectionsis an exampleof a generaltech-
niqueknown as“striping,” which hasbeena strategy for transportprotocolimprovementknown to
satellitenetwork operatorsfor sometime,andwhich hasmostrecentlybeenstudiedin thecontext
of FTP[6]. BecauseTCPandHTTPoptimizationssuchasT/TCP, andTCPwith 4KSSdonotyield
majorperformanceimprovementsfor mostusersof theInternet[57], it is unclearwhetherthey will
seedeployment. In fact,Padmanabhanrecentlystudiedthepotentialbenefitof not usingP-HTTP
but insteadrevertingbackto multiple, concurrentTCPconnectionsthatsharecongestionwindow
andotherstateinformation[99].

In summary, for connectionsusingGEOsatellitelinks,TCPoptimizationssuchasT/TCP
and4KSS,especiallywhenusedtogether, canyield a reductionof two to threetimesin in user-
perceived latency andcan also reducethe bandwidthoverheadof HTTP connections.For LEO
satellitelinks, optimizationsto reducethenumberof unnecessarycontrolpacketsaredesirable,but
optimizationsto reducelatency will not have asperceptibleof aneffect for usersbecausepropaga-
tion delaysaresmaller. However, sincesuchoptimizationsbenefitonly a smallusercommunity, it
is possiblethatthey will not seewidespreaddeployment.
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Geostationaryorbit (600msRTT)
1500byte segments 500byte segments

minimum median mean expt. mean minimum median mean expt. mean
Standard TCP 1.2 1.9 1.9 2.0(0.1) 1.2 2.5 2.5 2.6(0.1)

T/TCP 0.6 1.2 1.2 1.4(0.1) 0.6 1.8 1.7 2.0(0.1)

TCP “4KSS” 1.2 1.2 1.4 1.6(0.1) 1.2 1.8 1.7 1.9(0.1)

T/TCP “4KSS” 0.6 0.6 0.8 1.0(0.1) 0.6 1.2 1.1 1.3(0.1)

Low-earth orbit (80msRTT)
Standard TCP 0.16 0.34 0.31 0.37(0.02) 0.16 0.42 0.42 0.55(0.02)

T/TCP 0.08 0.16 0.17 0.28(0.02) 0.08 0.24 0.25 0.47(0.02)

TCP “4KSS” 0.16 0.16 0.18 0.25(0.01) 0.16 0.24 0.23 0.31(0.01)

T/TCP “4KSS” 0.08 0.08 0.10 0.16(0.01) 0.08 0.16 0.15 0.23(0.01)

Table4.2: TCP latency effectson HTTP transfersfor GEOandLEO satelliteconnections.Trace
datais takenfrom [27]. All latenciesarein seconds.For theexperimentalresults,95%confidence
intervalsareshown in parentheses.

4.3 Split TCP Connections

AlthoughTCPcanwork well over evenGEOsatellitelinks undercertainconditions,we
have illustratedthattherearecasesfor which eventhebestend-to-endmodificationscannotensure
goodperformance.Furthermore,in anactualnetwork with a heterogeneoususerpopulation,users
andserverscannotall beexpectedto berunningsatellite-optimizedversionsof TCP. This hasled
to thepracticeof “splitting” transportconnections.Thisconceptis notnew; satelliteoperatorshave
deployed protocolconvertersfor many years. In this section,we describehow TCP connections
maybesplit at a satellitegateway, identify somedrawbacksto split connections,andquantifyhow
muchimprovementcanbeobtained.

4.3.1 Split ConnectionApproaches

The ideabehindsplit connectionsis to shieldhigh-latency or lossy network segments
from therestof thenetwork, in amannertransparentto applications.TCPconnectionsmaybesplit
in a numberof ways. Figure4.22illustratesthemostgeneralcase,in which a gateway is inserted
on the link betweenthesatelliteterminalequipmentandthe terrestrialnetwork. On theuserside,
the gateway may be integratedwith the userterminal, or theremay be no gateway at all. The
goal is for endusersto beunawareof thepresenceof an intermediateagent,otherthanimproved
performance.Fromtheperspective of thehostin thewide-areaInternet,it is communicatingwith
a well-connectedhostwith a muchshorterlatency. Over the satellitelink, a satellite-optimized
transportprotocolcanbeused.

TCPmaybesplit in thefollowing ways:� TCP spoofingIn this approach,the gateway on the network sideof the connectionprema-
turely acknowledgesdatadestinedfor thesatellitehost,to speedup thesender’s datatrans-
mission[146]. It thensuppressesthetrueacknowledgmentstreamfrom thesatellitehost,and
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Figure4.22:Futuresatellitenetworkingtopologyin whichasatellite-basedhostcommunicateswith
aserver in theInternetthroughasatelliteprotocolgateway.

takesresponsibilityfor resendingany missingdata.As long asthetraffic is primarily unidi-
rectional,TCPdatagramsarepassedthroughthegateway without alteration. In the reverse
direction,thesamestrategy is followed.No changesareneededat thesatelliteclient.� TCP splitting Insteadof spoofing,the connectionmaybe fully split at the gateway on the
network side,anda secondTCP connectionmay be usedfrom the satellitegateway to the
satellitehost. Logically, thereis not muchdifferencebetweenthis approachandspoofing,
except that the gateway may try to run TCP optionsthat are not supportedby the terres-
trial server. Modernfirewall implementationsoftenperforma typeof TCPsplitting (suchas
sequencenumberremapping)for securityreasons.� WebcachingIf satellite-basedWebusersconnectto aWebcachewithin thesatellitenetwork,
thecacheis effectively splittingany TCPconnectionfor requeststhatresultin a cachemiss.
Therefore,Webcachingnot only canreducethe latency for usersin fetchingdatafrom the
Web,it hasthesidebenefitof splitting thetransportconnectionfor cachemisses.

Furthermore,whenthe TCP connectionis fully split at a gateway or cache,it is possibleto use
analternative protocolfor thesatelliteportionof theconnection.While this requiresthe useof a
satellitegateway or modifiedend-systemsoftwareon the satellitehost’s side, this approachmay
provide betterperformanceby improving on TCP’s performancein waysnot easilyachieved by
remainingbackwardcompatiblewith existingimplementations.Set-topboxesor otheruserterminal
equipmentmayprovideanaturalpoint for theimplementationof protocolconversion(backto TCP,
if necessary)on thesatellitehost’s sideof theconnection.
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Figure4.23:Forwardthroughputperformanceof split TCPin thepresenceof ashort-delaycompet-
ing connection.TCPSACK NewRenowith largewindows wasusedonbothconnectionportions.

In all threeapproaches,theamountof per-connectionbufferingrequiredat thegateway is
roughly2-3 timesthebandwidth-delayproductof thesatellitelink or theInternetpath,whichever
is smaller. Thecomputingresourcesrequiredto supportalargesetof users(approximately200-500
KB of memoryperactiveconnection,plusprocessing)canformasignificantportionof thehardware
requirementsof asatelliteInternetgateway. In addition,althoughpersistent-HTTPconnectionswill
reducethe numberof connectionsthat needto besetup andtorn down, they will alsodrastically
lower the duty cycle of eachTCP connection,requiringthe gateway to keepresourcesallocated
for idle connections.However, it is importantto emphasizethat if Webcachesor otherproxiesare
alreadypart of the satellitenetwork architecture,therewould be no needfor extra equipmentto
supporttransport-level gateways.

Besidesthe resourceconsumptionnotedabove, split connectionsarenot without other
hazards.First, from anarchitecturalstandpoint,a split TCPconnectionthat is not explicitly asso-
ciatedwith a proxy or a cachebreaksthe end-to-endsemanticsof the transportlayer. Although
approachesfor TCPimprovementover localareawirelesslinks, suchasBerkeley’s “snoop”proto-
col [10] and“mobile TCP” [21], canpreserve end-to-endsemantics,it is moredifficult to do soin
thesatelliteenvironmentbecausecombatingthe fairnessproblemrelieson earlyacknowledgment
of data.However, stepscanbetaken to ensurethat theconnectiondoesnot closenormallyunless
all datahasbeenreceived; for example,the gatewayscanallow the FIN segmentof TCP to pass
end-to-end.Furthermore,higher layer protocolstypically have mechanismsto restarta transport
connectionif it prematurelyfails. Second,gatewaysintroducea singlepoint of failure within the
network,andrequireall traffic for agivenconnectionto beroutedthroughthem(i.e.,therecanbeno
alternatepacket routing).Third, protocolconversiongatewaysareineffective if IP-level encryption
andauthenticationprotocolsareoperatingona link, althoughthey canstill functionnormallyif the
encryptionandauthenticationis performedat the transportlayer. In the caseof IP-level security,
the transportgateway mustbe includedaspart of the “trust infrastructure”to operate.Typically,
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Figure4.24: Reversechannelutilization of split TCP in the presenceof a short-delaycompeting
connection.TCPSACK NewRenowith largewindows wasusedonbothconnectionportions.

however, if a satellitenetwork is usedto provide “last-mile” accessto a largediversesetof users,
transport-level securityprotocolswill be usedinsteadof IP-level security; in this case,protocol
gatewayscanoperatecorrectly.

4.3.2 Split ConnectionPerformance

In Figure4.23,we illustratetheperformancegainsachievablewhentheTCPconnection
is split at the gateway betweenthe satellitenetwork andthe Internet,underthe sameconditions
asshown in Figure4.20 (a competingshortdelayconnectionin the Internet). We replottedthe
relevant datafrom Figure4.20 for comparison.Note that the presenceof the gateway allows the
split connectionto competefor bandwidthin the wide areaand obtain its fair share. However,
asshown in Figure4.24,thereversechannelusagerequiredfor this TCPconnectionis roughly20
Kb/s. Thisusagescaleslinearlywith theforwardthroughput,andfor 1000bytesegments,is roughly
2% of theforwardthroughputachieved. For bandwidth-constrained reversechannelsaswill bethe
casein mostsatellitesystems,thissetsanupperboundontheforwardthroughputachievableif TCP
reliesona streamof acknowledgmentsto clockoutnew data.Thissuggeststhatit wouldbeuseful
eitherto makemodificationsto TCPto reduceits reversechannelusage(suchasusingmodifications
to handleTCPasymmetry[11]) or to useaprotocolover thesatelliteportionof theconnectionthat
useslessbandwidth.We investigatethelatterpossibilityin thenext chapter.

4.4 Summary

In thischapter, wehaveinvestigatedtheperformanceof IP-compatibletransportprotocols
over satellitelinks from severalperspectives.Ourmainresultsareasfollows:

i) We observed little degradationin TCPperformancefor connectionswith RTTs in the
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rangeof futureLEO systems(40-200ms),althoughwe did not investigatepotentialproblemsdue
to largeRTT variations.However, maintaininggoodTCPperformanceoverGEOlatencies(or long
LEO paths)is challenging.

ii) While we foundthat theConstant-Rate(CR) policy could improve TCPfairnessdra-
matically, we facedtwo practicaldifficultiesthatwould likely preventuniversaldeploymentof this
schemein its currentform. First, theproperselectionof a constantis dependentuponthenetwork
topologyandthenumberof peerconnectionsandis thereforedifficult to determinein a distributed
manner. Second,the fairnessbenefitsof theCR policy canbeconfoundedby competingconnec-
tionsusingstandardcongestionavoidance,therebymakingit disadvantageousto deploy CR in an
existingheterogeneousenvironment.

iii) Whenwe insteadmadeonly certainlong RTT connectionsslightly moreaggressive,
wewerealwaysableto improvenetwork fairnesswhile keepingbottlenecklink utilizationrelatively
constantby usingan increase-by-� (IBK) policy. Interestingly, the effectson otherunmodified
connectionsthatweresharingthebottlenecklink weresimilar to whatthey wouldhaveexperienced
hadthemodifiedconnectionactuallybeenaconnectionwith a shorterRTT.

iv) If theright TCPoptionsareusedandcongestionis light, TCPcanwork well for large
file transferseven over GEO links. In particular, in our large file transferexperimentswith TCP
SACK plusNewRenocongestioncontrol,averagethroughputdecreasedby nomorethan10%when
theRTT wasincreasedfrom 20 msto 600ms. However, we showedthateven low levelsof com-
petitionfrom shortdelayflows (in the form of cross-traffic in thewide-areaInternet)significantly
degradesthesatelliteconnection’s performance.

v) Concerningthelatency dueto HTTP exchanges,we foundthattheuseof bothT/TCP
andmodifiedslow startperformedmuchbetterthaneitheroptionusedseparately, andcouldcut the
averageTCP-relatedlatency by a factorof two to threefor GEOlinks.

vi) We showed that the performanceproblemsdue to mis-configuredTCP or network
congestioncanbealleviatedby splitting theTCPconnectionat a gateway within thesatellitesub-
network. Evenwith congestionin thewide-areaInternet,theend-to-endconnectionis still ableto
maintainhigh throughput.

TCPhasprovento bea very robustprotocolin a varietyof network environments.How-
ever, this chapterhasillustratedthat obtaininggoodperformanceusingstandardend-to-endTCP
connectionsis very challengingin a GEOsatelliteenvironment.For file transfers,thebestperfor-
manceresultsthatwe obtainedwerebasedonsplitting theconnectionat a gateway, wherethelong
roundtrip delayof thesatelliteportionof thepathcanbeisolatedfrom theportionof theconnection
thattraversestheInternet.For shorttransactions,we foundthatthebestperformancerequiresTCP
enhancements(T/TCP, 4KSS)thatarenot implementedin thecurrentInternet–againleadingusto
considersplit connectionsolutions.Given thatonedecidesto split TCPconnectionsat a satellite
gateway, it is naturalto askwhatprotocol(eithermodifiedTCPor anentirelynew protocol)should
beusedover thesatelliteportionof thesplit connection.In thenext chapter, weattemptto improve
on our performanceresultseven further by designinga satellite-optimizedtransportprotocolthat
outperformseventhesplit TCPconfigurationdescribedabove in Section4.3.


